Search results

Search for "Aspergillus nidulans" in Full Text gives 6 result(s) in Beilstein Journal of Organic Chemistry.

Methodology for awakening the potential secondary metabolic capacity in actinomycetes

  • Shun Saito and
  • Midori A. Arai

Beilstein J. Org. Chem. 2024, 20, 753–766, doi:10.3762/bjoc.20.69

Graphical Abstract
  • been used in many studies examining silent gene activation (Figure 5a). For example, Krespach et al. reported that Streptomyces iranensis secretes azalomycin F3a (44) in the presence of Aspergillus nidulans [109]. Interestingly, A. nidulans also reacted to the presence of azalomycin F3a by producing
PDF
Album
Review
Published 10 Apr 2024

Recent developments in the engineered biosynthesis of fungal meroterpenoids

  • Zhiyang Quan and
  • Takayoshi Awakawa

Beilstein J. Org. Chem. 2024, 20, 578–588, doi:10.3762/bjoc.20.50

Graphical Abstract
  • Aspergillus nidulans, within the same phylogenetic clade. Expression of this enzyme in place of Trt1 resulted in the formation of the 6-6-6-6-membered ring protoaustinoid A (8) (Figure 2) [9]. In addition, the expression of the cyclase AdrI (38% identity with Trt1) from Penicillium chrysogenum produced the 6
PDF
Album
Review
Published 13 Mar 2024

Biosynthesis of oxygen and nitrogen-containing heterocycles in polyketides

  • Franziska Hemmerling and
  • Frank Hahn

Beilstein J. Org. Chem. 2016, 12, 1512–1550, doi:10.3762/bjoc.12.148

Graphical Abstract
  • chain, attached to the C3 of an oxidised isobenzofuran (Scheme 15). The respective biosynthetic cluster contains seven genes and has been identified by Wang and co-workers through a genome mining approach in Aspergillus nidulans [76]. Later on, the same group annotated a highly homologous gene cluster
PDF
Album
Review
Published 20 Jul 2016

The chemistry of isoindole natural products

  • Klaus Speck and
  • Thomas Magauer

Beilstein J. Org. Chem. 2013, 9, 2048–2078, doi:10.3762/bjoc.9.243

Graphical Abstract
  • erinaceum [137][138]. Another member of this family, aspernidine A (164), was recently isolated form the fungus Aspergillus nidulans by Hertweck [139]. A comprehensive review about meroterpenoids produced by fungi was published by Simpson in 2009 [140]. The isolated molecules display a broad spectrum of
PDF
Album
Video
Review
Published 10 Oct 2013

Activation of cryptic metabolite production through gene disruption: Dimethyl furan-2,4-dicarboxylate produced by Streptomyces sahachiroi

  • Dinesh Simkhada,
  • Huitu Zhang,
  • Shogo Mori,
  • Howard Williams and
  • Coran M. H. Watanabe

Beilstein J. Org. Chem. 2013, 9, 1768–1773, doi:10.3762/bjoc.9.205

Graphical Abstract
  • kb) [6][7]. Direct manipulation, “induced” biosynthetic activation, of a sequenced cluster has also met with some success. The Aspergillus nidulans genome was mined for cryptic orphan gene clusters from which a single, unexpressed PKS-NRPS hybrid was identified. The expression of the gene cluster was
PDF
Album
Supp Info
Letter
Published 29 Aug 2013

Volatile organic compounds produced by the phytopathogenic bacterium Xanthomonas campestris pv. vesicatoria 85-10

  • Teresa Weise,
  • Marco Kai,
  • Anja Gummesson,
  • Armin Troeger,
  • Stephan von Reuß,
  • Silvia Piepenborn,
  • Francine Kosterka,
  • Martin Sklorz,
  • Ralf Zimmermann,
  • Wittko Francke and
  • Birgit Piechulla

Beilstein J. Org. Chem. 2012, 8, 579–596, doi:10.3762/bjoc.8.65

Graphical Abstract
  • bacteria were different for growth on media (nutrient broth) with or without glucose. Keywords: Aspergillus nidulans; Fusarium solani; growth inhibition and promotion; methylketones; 10-methylundecan-2-one; Rhizoctonia solani; volatile organic compound (VOC); Xanthomonas campestris pv. vesicatoria
  • other organisms, three fungi, Aspergillus nidulans, Fusarium solani and Rhizoctonia solani, were cocultivated with X. c. pv. vesicatoria 85-10 in compartmentalized Petri dishes (Figure 1). This ensures that only volatiles can diffuse between the compartments to act on the fungal test organisms. Since it
  • inhibited the growth of Rhizoctonia solani and Aspergillus nidulans and to a certain extent that of Fusarium solani. The inhibition was stronger when X. c. pv. vesicatoria 85-10 was grown on NB as compared to NBG. Both methods, GC/MS and PTR–MS, indicated the emission of a multitude of volatile compounds
PDF
Album
Full Research Paper
Published 17 Apr 2012
Other Beilstein-Institut Open Science Activities